Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(20): 6205-6217, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642718

RESUMEN

Naringin found in citrus fruits is a flavanone glycoside with numerous biological activities. However, the bitterness, low water-solubility, and low bioavailability of naringin are the main issues limiting its use in the pharmaceutical and nutraceutical industries. Herein, a glucansucrase from isolated Leuconostoc citreum NY87 was used for trans-α-glucosylattion of naringin by using sucrose as substrate. Two naringin glucosides (O-α-D-glucosyl-(1'''' → 6″) naringin (compound 1) and 4'-O-α-D-glucosyl naringin (compound 2)) were purified and determined their structures by nuclear magnetic resonance. The optimization condition for the synthesis of compound 1 was obtained at 10 mM naringin, 200 mM sucrose, and 337.5 mU/mL at 28 °C for 24 h by response surface methodology method. Compound 1 and compound 2 showed 1896- and 3272 times higher water solubility than naringin. Furthermore, the bitterness via the human bitter taste receptor TAS2R39 displayed that compound 1 was reduced 2.9 times bitterness compared with naringin, while compound 2 did not express bitterness at 1 mM. Both compounds expressed higher neuroprotective effects than naringin on human neuroblastoma SH-SY5Y cells treated with 5 mM scopolamine based on cell viability and cortisol content. Compound 1 reduced acetylcholinesterase activity more than naringin and compound 2. These results indicate that naringin glucosides could be utilized as functional material in the nutraceutical and pharmaceutical industries. KEY POINTS: • A novel O-α-D-glucosyl-(1 → 6) naringin was synthesized using glucansucrase from L. citreum NY87. • Naringin glucosides improved water-solubility and neuroprotective effects on SH-SY5Y cells. • Naringin glucosides showed a decrease in bitterness on bitter taste receptor 39.


Asunto(s)
Flavanonas , Neuroblastoma , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Solubilidad , Acetilcolinesterasa , Flavanonas/farmacología , Sacarosa/química , Glucósidos/farmacología , Glucósidos/química , Agua , Receptores de Superficie Celular
2.
Food Sci Anim Resour ; 43(4): 612-624, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37484004

RESUMEN

The gut-brain axis encompasses a bidirectional communication pathway between the gastrointestinal microbiota and the central nervous system. There is some evidence to suggest that probiotics may have a positive effect on cognitive function, but more research is needed before any definitive conclusions can be drawn. Inflammation-induced by lipopolysaccharide (LPS) may affect cognitive function. To confirm the effect of probiotics on oxidative stress induced by LPS, the relative expression of antioxidant factors was confirmed, and it was revealed that the administration of probiotics had a positive effect on the expression of antioxidant-related factors. After oral administration of probiotics to mice, an intentional inflammatory response was induced through LPS i.p., and the effect on cognition was confirmed by the Morris water maze test, nitric oxide (NO) assay, and interleukin (IL)-1ß enzyme-linked immunosorbent assay performed. Experimental results, levels of NO and IL-1 ß in the blood of LPS i.p. mice were significantly decreased, and cognitive evaluation using the Morris water maze test showed significant values in the latency and target quadrant percentages in the group that received probiotics. This proves that intake of these probiotics improves cognitive impairment and memory loss through anti-inflammatory and antioxidant mechanisms.

3.
J Microbiol Biotechnol ; 33(2): 203-210, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36655284

RESUMEN

Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether L-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in L-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of L-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.


Asunto(s)
Papilas Gustativas , Gusto , Animales , Humanos , Canales de Calcio/genética , Canales de Calcio/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Receptores de Superficie Celular/genética , Gusto/genética , Papilas Gustativas/metabolismo , Xenopus laevis
4.
Eur J Pharmacol ; 939: 175454, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549498

RESUMEN

The antidepressant-like activity of (+)-catharanthine and (-)-18-methoxycoronaridine [(-)-18-MC] was studied in male and female mice using forced swim (FST) and tail suspension tests (TST). The underlying molecular mechanism was assessed by electrophysiological, radioligand, and functional experiments. The FST results showed that acute administration (40 mg/kg) of (+)-catharanthine or (-)-18-MC induces similar antidepressant-like activity in male and female mice at 1 h and 24 h, whereas the TST results showed a lower effect for (-)-18-MC at 24 h. Repeated treatment at lower dose (20 mg/kg) augmented the efficacy of both congeners. The FST results showed that (-)-18-MC reduces immobility and increases swimming times without changing climbing behavior, whereas (+)-catharanthine reduces immobility time, increases swimming times more markedly, and increases climbing behavior. To investigate the contribution of the serotonin and norepinephrine transporters in the antidepressant effects of (+)-catharanthine and (-)-18-MC, we conducted in vitro radioligand and functional studies. Results obtained demonstrated that (+)-catharanthine inhibits norepinephrine transporter with higher potency/affinity than that for (-)-18-MC, whereas both congeners inhibit serotonin transporter with similar potency/affinity. Moreover, whereas no congener activated/inhibited/potentiated the function of serotonin receptor 3A or serotonin receptor 3AB, both increased serotonin receptor 3A receptor desensitization. Depletion of serotonin decreased the antidepressant-like activity of both congeners, whereas norepinephrine depletion only decreased (+)-catharanthine's activity. Our study shows that coronaridine congeners induce antidepressant-like activity in a dose- and time-dependent, and sex-independent, manner. The antidepressant-like property of both compounds involves serotonin transporter inhibition, without directly activating/inhibiting serotonin receptors 3, while (+)-catharanthine also mobilizes norepinephrinergic neurotransmission.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Ratones , Masculino , Femenino , Animales , Serotonina/fisiología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación , Transmisión Sináptica , Norepinefrina , Suspensión Trasera , Depresión/tratamiento farmacológico
5.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203390

RESUMEN

Odorant molecules interact with odorant receptors (ORs) lining the pores on the surface of the sensilla on an insect's antennae and maxillary palps. This interaction triggers an electrical signal that is transmitted to the insect's nervous system, thereby influencing its behavior. Orco, an OR coreceptor, is crucial for olfactory transduction, as it possesses a conserved sequence across the insect lineage. In this study, we focused on 2,4-di-tert-butylphenol (DTBP), a single substance present in acetic acid bacteria culture media. We applied DTBP to oocytes expressing various Drosophila melanogaster odor receptors and performed electrophysiology experiments. After confirming the activation of DTBP on the receptor, the binding site was confirmed through point mutations. Our findings confirmed that DTBP interacts with the insect Orco subunit. The 2-heptanone, octanol, and 2-hexanol were not activated for the Orco homomeric channel, but DTBP was activated, and the EC50 value was 13.4 ± 3.0 µM. Point mutations were performed and among them, when the W146 residue changed to alanine, the Emax value was changed from 1.0 ± 0 in the wild type to 0.0 ± 0 in the mutant type, and all activity was decreased. Specifically, DTBP interacted with the W146 residue of the Orco subunit, and the activation manner was concentration-dependent and voltage-independent. This molecular-level analysis provides the basis for novel strategies to minimize pest damage. DTBP, with its specific binding to the Orco subunit, shows promise as a potential pest controller that can exclusively target insects.


Asunto(s)
Ácido Acético , Ciclohexanos , Drosophila melanogaster , Fenoles , Animales , Drosophila melanogaster/genética , Alanina
6.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430653

RESUMEN

Sleep is an essential component of quality of life. The majority of people experience sleep problems that impact their quality of life. Melatonin is currently a representative sleep aid. However, it is classified as a prescription drug in most countries, and consumers cannot purchase it to improve their sleep. This sleep induction experiment in mice aimed to identify a natural combination product (NCP) that can create synergistic sleep-promoting effects. Based on the mechanism of action of sleep, we investigated whether phenomenological indicators of sleep quality change according to the intake of NCP. The sleep onset and sleep time of the mice that consumed the NCP found by this study were improved compared to the existing sleep aids. The mean melatonin level in the blood increased by 197% compared to the control. To our knowledge, this is the first study to demonstrate that Rosa multiflora Thunb. (Yeongsil) can promote sleep similarly to Zizyphus jujuba Miller (Sanjoin). The results indicate a preclinical study of NCPs containing Rosa multiflora Thunb and Zizyphus jujuba Miller developed by us showed significant differences in sleep incubation and duration depending on melatonin concentrations. Our results also suggest that increased melatonin concentrations in the blood are likely to improve sleep quality, especially regarding incubation periods.


Asunto(s)
Anestesia , Melatonina , Rosa , Ziziphus , Ratones , Animales , Melatonina/farmacología , Calidad del Sueño , Calidad de Vida
7.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296601

RESUMEN

DDX3 is a DEAD-box RNA helicase with diverse biological functions through multicellular pathways. The objective of this study was to investigate the role of DDX3 in regulating melanogenesis by the exploring signaling pathways involved. Various concentrations of hydrogen peroxide were used to induce melanogenesis in SK-Mel-2 human melanoma cells. Melanin content assays, tyrosinase activity analysis, and Western blot analysis were performed to determine how DDX3 was involved in melanogenesis. Transient transfection was performed to overexpress or silence DDX3 genes. Immunoprecipitation was performed using an antityrosinase antibody. Based on the results of the cell viability test, melanin content, and activity of tyrosinase, a key melanogenesis enzyme, in SK-Mel-2 human melanoma cells, hydrogen peroxide at 0.1 mM was chosen to induce melanogenesis. Treatment with H2O2 notably increased the promoter activity of DDX3. After treatment with hydroperoxide for 4 h, melanin content and tyrosinase activity peaked in DDX3-transfected cells. Overexpression of DDX3 increased melanin content and tyrosinase expression under oxidative stress induced by H2O2. DDX3 co-immunoprecipitated with tyrosinase, a melanogenesis enzyme. The interaction between DDX3 and tyrosinase was strongly increased under oxidative stress. DDX3 could increase melanogenesis under the H2O2-treated condition. Thus, targeting DDX3 could be a novel strategy to develop molecular therapy for skin diseases.


Asunto(s)
Melanoma Experimental , Melanoma , Humanos , Animales , Melaninas , Peróxido de Hidrógeno/farmacología , Monofenol Monooxigenasa/metabolismo , ARN Helicasas DEAD-box/genética , Línea Celular Tumoral , Melanoma Experimental/metabolismo
8.
Antioxidants (Basel) ; 11(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009192

RESUMEN

(1) Background: The N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory currents leading to depolarization. Postsynaptic NMDARs are ionotropic glutamate receptors that mediate excitatory glutamate or glycine signaling in the CNS and play a primary role in long-term potentiation, which is a major form of use-dependent synaptic plasticity. The overstimulation of NMDARs mediates excessive Ca2+ influx to postsynaptic neurons and facilitates more production of ROS, which induces neuronal apoptosis. (2) Methods: To confirm the induced inward currents by the coapplication of glutamate and ergotamine on NMDARs, a two-electrode voltage clamp (TEVC) was conducted. The ergotamine-mediated inhibitory effects of NR1a/NR2A subunits were explored among four different kinds of recombinant NMDA subunits. In silico docking modeling was performed to confirm the main binding site of ergotamine. (3) Results: The ergotamine-mediated inhibitory effect on the NR1a/NR2A subunits has concentration-dependent, reversible, and voltage-independent properties. The major binding sites were V169 of the NR1a subunit and N466 of the NR2A subunit. (4) Conclusion: Ergotamine effectively inhibited NR1a/NR2A subunit among the subtypes of NMDAR. This inhibition effect can prevent excessive Ca2+ influx, which prevents neuronal death.

9.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008969

RESUMEN

Monoamine serotonin is a major neurotransmitter that acts on a wide range of central nervous system and peripheral nervous system functions and is known to have a role in various processes. Recently, it has been found that 5-HT is involved in cognitive and memory functions through interaction with cholinergic pathways. The natural flavonoid kaempferol (KAE) extracted from Cudrania tricuspidata is a secondary metabolite of the plant. Recently studies have confirmed that KAE possesses a neuroprotective effect because of its strong antioxidant activity. It has been confirmed that KAE is involved in the serotonergic pathway through an in vivo test. However, these results need to be confirmed at the molecular level, because the exact mechanism that is involved in such effects of KAE has not yet been elucidated. Therefore, the objective of this study is to confirm the interaction of KAE with 5-HT3A through electrophysiological studies at the molecular level using KAE extracted from Cudrania tricuspidata. This study confirmed the interaction between 5-HT3A and KAE at the molecular level. KAE inhibited 5-HT3A receptors in a concentration-dependent and voltage-independent manner. Site-directed mutagenesis and molecular-docking studies confirmed that the binding sites D177 and F199 are the major binding sites of human 5-HT3A receptors of KAE.


Asunto(s)
Quempferoles/farmacología , Triterpenos Pentacíclicos/farmacología , Receptores de Serotonina 5-HT3/metabolismo , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Sitios de Unión , Relación Dosis-Respuesta a Droga , Humanos , Quempferoles/química , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Triterpenos Pentacíclicos/química , Unión Proteica , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/genética , Antagonistas del Receptor de Serotonina 5-HT3/química , Relación Estructura-Actividad
10.
Molecules ; 26(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062829

RESUMEN

Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3ß4 nicotinic acetylcholine receptors (α3ß4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3ß4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the ß4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor's ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.


Asunto(s)
Acetilcolina/metabolismo , Triterpenos Pentacíclicos/farmacología , Receptores Nicotínicos/metabolismo , Animales , Sitios de Unión , Bovinos , Electrofisiología , Ligandos , Simulación del Acoplamiento Molecular , Mutagénesis , Mutación , Oocitos/citología , Oocitos/metabolismo , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Semillas , Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Transcripción Genética , Triterpenos/farmacología , Xenopus laevis , Ziziphus , Ácido gamma-Aminobutírico/metabolismo , Ácido Betulínico
11.
Eur J Pharmacol ; 906: 174220, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34081905

RESUMEN

Schisandrin C (Sch C) is one of the main components of Schisandra chinensis (Schisandra). Since the olden times, Schisandra has been used as a traditional herbal medicine in Asia. Recent studies have shown that Schisandra is effective against irritable bowel syndrome (IBS) in an animal model and affects IBS through the 5-HT3A pathway in the IBS rat model. However, there lacks fundamental research on the interaction of specific components of Schisandra with the 5-HT3A receptor for the treatment of IBS. We hypothesized that a component of Schisandra binds to the 5-HT3A receptor and identified Sch C via a screening work using two electrode-voltage clamps (TEVC). Thus, we aimed to elucidate the neuropharmacological actions between Sch C and the 5-HT3A receptor at molecular and cellular levels. Co-treatment of Sch C with 5-HT inhibited I5-HT in a reversible, concentrate-dependent, like-competition, and voltage-independent manner, and IC50 values of Sch C. Besides, the main binding positions of Sch C were identified through 3D modeling and point mutation were V225A and V288Y on 5-HT3A receptor. Thus, we suggest the potential of Sch C in treating IBS in a manner that suppresses excessive neuronal serotonin signaling in the synapse of sensory neurons and enterochromaffin (EC) cells. In conclusion, the results demonstrate the mechanism of interaction between Sch C and 5-HT3A receptor and reveal Sch C as a novel antagonist.


Asunto(s)
Lignanos/farmacología , Compuestos Policíclicos/farmacología , Receptores de Serotonina 5-HT3/metabolismo , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Animales , Ciclooctanos/farmacología , Ciclooctanos/uso terapéutico , Células Enterocromafines/efectos de los fármacos , Células Enterocromafines/metabolismo , Humanos , Concentración 50 Inhibidora , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inervación , Mucosa Intestinal/patología , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/patología , Lignanos/uso terapéutico , Simulación del Acoplamiento Molecular , Oocitos , Técnicas de Placa-Clamp , Compuestos Policíclicos/uso terapéutico , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Antagonistas del Receptor de Serotonina 5-HT3/uso terapéutico , Xenopus laevis
12.
Molecules ; 26(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668306

RESUMEN

Irritable bowel syndrome (IBS) is a chronic disease that causes abdominal pain and an imbalance of defecation patterns due to gastrointestinal dysfunction. The cause of IBS remains unclear, but intestinal-brain axis problems and neurotransmitters have been suggested as factors. In this study, chanoclavine, which has a ring structure similar to 5-hydroxytryptamine (5-HT), showed an interaction with the 5-HT3A receptor to regulate IBS. Although its derivatives are known to be involved in neurotransmitter receptors, the molecular physiological mechanism of the interaction between chanoclavine and the 5-HT3A receptor is unknown. Electrophysiological experiments were conducted using a two-electrode voltage-clamp analysis to observe the inhibitory effects of chanoclavine on Xenopus oocytes in which the h5-HT3A receptor was expressed. The co-application of chanoclavine and 5-HT resulted in concentration-dependent, reversible, voltage-independent, and competitive inhibition. The 5-HT3A response induced by 5-HT was blocked by chanoclavine with half-maximal inhibitory response concentration (IC50) values of 107.2 µM. Docking studies suggested that chanoclavine was positioned close F130 and N138 in the 5-HT3A receptor-binding site. The double mutation of F130A and N138A significantly attenuated the interaction of chanoclavine compared to a single mutation or the wild type. These data suggest that F130 and N138 are important sites for ligand binding and activity. Chanoclavine and ergonovine have different effects. Asparagine, the 130th amino acid sequence of the 5-HT3A receptor, and phenylalanine, the 138th, are important in the role of binding chanoclavine, but ergonovine has no interaction with any amino acid sequence of the 5-HT3A receptor. The results of the electrophysiological studies and of in silico simulation showed that chanoclavine has the potential to inhibit the hypergastric stimulation of the gut by inhibiting the stimulation of signal transduction through 5-HT3A receptor stimulation. These findings suggest chanoclavine as a potential antiemetic agent for excessive gut stimulation and offer insight into the mechanisms of 5-HT3A receptor inhibition.


Asunto(s)
Ergolinas/farmacología , Receptores de Serotonina 5-HT3/metabolismo , Relación Dosis-Respuesta a Droga , Ergolinas/química , Ergonovina/química , Ergonovina/farmacología , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
13.
Antioxidants (Basel) ; 11(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35052566

RESUMEN

Transient receptor potential vanilloid member 1 (TRPV1) is activated in response to capsaicin, protons, temperature, and free reactive oxygen species (ROS) released from inflammatory molecules after exposure to harmful stimuli. The expression level of TRPV1 is elevated in the dorsal root ganglion, and its activation through capsaicin and ROS mediates neuropathic pain in mice. Its expression is high in peripheral and central nervous systems. Although pain is a response evolved for survival, many studies have been conducted to develop analgesics, but no clear results have been reported. Here, we found that naringin selectively inhibited capsaicin-stimulated inward currents in Xenopus oocytes using a two-electrode voltage clamp. The results of this study showed that naringin has an IC50 value of 33.3 µM on TRPV1. The amino acid residues D471 and N628 of TRPV1 were involved in its binding to naringin. Our study bridged the gap between the pain suppression effect of TRPV1 and the preventive effect of naringin on neuropathic pain and oxidation. Naringin had the same characteristics as a model selective antagonist, which is claimed to be ideal for the development of analgesics targeting TRPV1. Thus, this study suggests the applicability of naringin as a novel analgesic candidate through antioxidative and analgesic effects of naringin.

14.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570692

RESUMEN

Cardiovascular disease (CVD) occurs globally and has a high mortality rate. The highest risk factor for developing CVD is high blood pressure. Currently, natural products are emerging for the treatment of hypertension to avoid the side effects of drugs. Among existing natural products, lupeol is known to be effective against hypertension in animal experiments. However, there exists no study regarding the molecular physiological evidence against the effects of lupeol. Consequently, we investigated the interaction of lupeol with α3ß4 nicotinic acetylcholine receptors (nAChRs). In this study, we performed a two-electrode voltage-clamp technique to investigate the effect of lupeol on the α3ß4 nicotine acetylcholine receptor using the oocytes of Xenopus laevis. Coapplication of acetylcholine and lupeol inhibited the activity of α3ß4 nAChRs in a concentration-dependent, voltage-independent, and reversible manner. We also conducted a mutational experiment to investigate the influence of residues of the α3 and ß4 subunits on lupeol binding with nAChRs. Double mutants of α3ß4 (I37A/N132A), nAChRs significantly attenuated the inhibitory effects of lupeol compared to wild-type α3ß4 nAChRs. A characteristic of α3ß4 nAChRs is their effect on transmission in the cardiac sympathetic ganglion. Overall, it is hypothesized that lupeol lowers hypertension by mediating its effects on α3ß4 nAChRs. The interaction between lupeol and α3ß4 nAChRs provides evidence against its effect on hypertension at the molecular-cell level. In conclusion, the inhibitory effect of lupeol is proposed as a novel therapeutic approach involving the antihypertensive targeting of α3ß4 nAChRs. Furthermore, it is proposed that the molecular basis of the interaction between lupeol and α3ß4 nAChRs would be helpful in cardiac-pharmacology research and therapeutics.


Asunto(s)
Acetilcolina/farmacología , Sistema Cardiovascular/metabolismo , Triterpenos Pentacíclicos/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Animales , Sistema Cardiovascular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Triterpenos Pentacíclicos/química , Mutación Puntual , Receptores Nicotínicos/química , Xenopus laevis
15.
Pharmacol Rep ; 72(2): 472-480, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32048268

RESUMEN

BACKGROUND: N-methyl-D-aspartate (NMDA) receptor is a tetrameric protein complex composed of glycine-linked NR1 subunits and glutamate-linked NR2 subunits. There are four NR2 subunits (A-D) that differ in development, anatomy, and function profiles. They play various roles in normal and neuropathologic conditions. Specific agonists, antagonists, and modulators of subunits for selective NMDA receptors may be precious mediational tools and potent agents for treating diseases. The objective of this study was to determine the effect of poricoic acid A on NMDA receptor known to mediate excitatory synaptic transmission factors and cause changes in synaptic strength. Inhibitory effect of poricoic acid A on NR1a combined with NR2A, NR2B, NR2C, or NR2D receptor was evaluated. METHODS: Glutamate-mediated currents for each NR1a and NR2 subunits were investigated using two-electrode voltage-clamp techniques. Molecular modeling and molecular dynamics simulation studies were carried out with Autodock Tools. Poricoic acid A and NMDA receptor protein complex were examined with Ligplot and Pymol docking program. Ligplot shows binding activity at the protein and the ligand. RESULTS: The inhibitory effect of poricoic acid A on glutamate-induced inward current in a concentration-dependent manner that was reversible. Half inhibitory concentrations of glutamate on NR1a/NR2A, NR1a/NR2B, NR1a/NR2C, and NR1a/NR2D receptors were 9.6 ± 1.2, 5.7 ± 0.4, 46.1 ± 21.5, and 21.5 ± 8.2 µM, respectively. This corresponded to the order of inhibitory effect of oocyte expressing NR1a and NR2s subunit of NR1a/NR2B > NR1a/NR2A > NR1a/NR2C > NR1a/NR2D. CONCLUSIONS: Taken together, these results indicate that poricoic acid A can modulate the expression of NMDA receptor. In addition, the regulation of excitatory ligand-gating ion channel by poricoic acid A may have pharmaceutical functions on excitatory synaptic transmission of neuronal system.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Triterpenos/farmacología , Animales , Sitios de Unión , Ácido Glutámico/farmacología , Simulación de Dinámica Molecular , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Unión Proteica , Subunidades de Proteína , Receptores de N-Metil-D-Aspartato/genética , Xenopus
16.
Front Plant Sci ; 10: 1092, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572413

RESUMEN

1-Aminocyclopropane-1-carboxylic acid (ACC), a biosynthetic precursor of ethylene, has long been proposed to act as a mobile messenger in higher plants. However, little is known about the transport system of ACC. Recently, our genetic characterization of an ACC-resistant mutant with normal ethylene sensitivity revealed that lysine histidine transporter 1 (LHT1) functions as a transporter of ACC. As amino acid transporters might have broad substrate specificity, we hypothesized that other amino acid transporters including LHT1 paralogs might have the ACC-transporter activity. Here, we took a gain-of-function approach by transgenic complementation of lht1 mutant with a selected set of amino acid transporters. When we introduced transgene into the lht1 mutant, the transgenic expression of LHT2, but not of LHT3 or amino acid permease 5 (AAP5), restored the ACC resistance phenotype of the lht1 mutant. The result provides genetic evidence that some, if not all, amino acid transporters in Arabidopsis can function as ACC transporters. In support, when expressed in Xenopus laevis oocytes, both LHT1 and LHT2 exhibited ACC-transporting activity, inducing inward current upon addition of ACC. Interestingly, the transgenic expression of LHT2, but not of LHT3 or AAP5, could also suppress the early senescence phenotypes of the lht1 mutant. Taking together, we propose that plants have evolved a multitude of ACC transporters based on amino acid transporters, which would contribute to the differential distribution of ACC under various spatiotemporal contexts.

17.
Phytomedicine ; 65: 153096, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31568920

RESUMEN

BACKGROUND: DDX3 plays a role in multicellular pathways, especially exerting an anti-apoptotic effect on extrinsic apoptosis. However, studies on the role of DDX3 in intrinsic apoptosis are lacking. PURPOSE: In this study, we aimed to study the bio-function of DDX3 anti-apoptotic activity in the intrinsic pathway using HeLa cells treated with sanguinarine. STUDY DESIGN: Screening of apoptosis-inducing agents found that sanguinarine was the most effective. After treatment with sanguinarine, cell viability, caspase-3 activity, and intrinsic gene expression were analyzed. FACS assays were used to analyze the effect of overexpression and knockdown of DDX3 to determine its role on intrinsic apoptosis. The relationship between DDX3 and the inhibition of p21 and apoptosis was investigated. RESULTS: Sanguinarine was determined to be the most effective intrinsic apoptosis-inducing agent in HeLa cervical cancer cells. DDX3 upregulated anti-apoptotic gene expression (Bcl-xL, cyclin D1, cyclin E, and cyclin B1) and downregulated pro-apoptotic gene expression (caspase-3, Bax) after sanguinarine treatment. The apoptotic cell death rate increased from 8.74% (sanguinarine-treated control) to 17.6% after the knockdown of DDX3 but decreased to 5.29% after DDX3 overexpression. The results implied that p21 might be involved in the toxicity of sanguinarine to HeLa cells. Overexpression and knockdown of DDX3 under sanguinarine-treated conditions showed that DDX3 inhibited p21 expression in sanguinarine-treated HeLa cells. Notably, when we tested p21 expression among eight mutants located in the functional residues of DDX3 (S90A, S90E, T204A, T204E, GET, NEAD, LAT, and HRISR) under sanguinarine-treated conditions, only the S90E mutation in DDX3 had an effect on the inhibition of p21 expression and levels of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic genes (Bcl-xL, cyclin D1, cyclin E, and cyclin B1), as well as DDX3. CONCLUSION: Taken together, the results suggest that the S90E residue is important for the regulation of p21 expression responsible for the anti-apoptotic activity of DDX3 in HeLa cells treated with sanguinarine. A model of the antiapoptotic function of DDX3 on sanguinarine-treated HeLa cells was proposed to understand the molecular mechanism of the intrinsic apoptosis inhibition in cervical cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzofenantridinas/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN Helicasas DEAD-box/metabolismo , Isoquinolinas/farmacología , Antineoplásicos/farmacología , Apoptosis/fisiología , Caspasa 3/metabolismo , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
18.
J Cell Biochem ; 120(10): 18193-18208, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31172579

RESUMEN

DDX3 is a host viral factor that can inhibit the hepatitis B virus-induced innate immune responses. In this study, the 20 bioactive compounds have screened the effects on DDX3 and we found that 5-HT upregulated DDX3 promoter activity via the 5-HT7 receptor on liver hepatocellular cells (HepG2 cells) by using a luciferase assay, reverse transcription-polymerase chain reaction analysis, and Western blot analysis. Furthermore, we are trying to elucidate the pathways involved in the stimulating effect of 5-HT on DDX3 expression to induce innate immune responses against hepatitis B virus infection. A knockdown of the 5-HT7 receptor by transfection si-5-HT7 receptors or si-control into HepG2 cells treated by 5-HT (or 5-HT plus agonist) confirmed the role of the 5-HT7 receptor in DDX3 expression. The IFN-ß-Luc expression and level of hepatitis B virus surface Antigen (HBsAg) showed that DDX3 mediated by the 5-HT7 agonist (AS-19) increased IFN-ß expression and inhibited HBV replication. Luciferase assays showed the involvement of 5-HT7 receptors in DDX3 expression via cAMP/AC/PKA pathways by using protein kinase A (PKA) and adenylyl cyclase inhibitor (MDL 12330A). AS-19 mediated DDX3 promoter activated PKA extracellular signal-regulated kinase ERK signaling the p53 phosphorylation (-1080/-1070) resulted in upregulation of DDX3 promoter transactivation via the 5-HT7 receptors agonist. Overall, 5-HT7 was found to be a new potential target to inhibit hepatitis B infection by activating AC/PKA/ERK pathways by phosphorylating p53 via the 5-HT7 agonist response by mediating DDX3 expression.


Asunto(s)
ARN Helicasas DEAD-box/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas/metabolismo , Receptores de Serotonina/genética , Serotonina/farmacología , Adenilil Ciclasas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ARN Helicasas DEAD-box/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Hep G2 , Virus de la Hepatitis B/fisiología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Fosforilación/efectos de los fármacos , Interferencia de ARN , Receptores de Serotonina/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Replicación Viral/efectos de los fármacos
19.
Biochem Biophys Res Commun ; 513(1): 213-218, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30954220

RESUMEN

Rare cold-inducible 2 (RCI2) proteins are small hydrophobic proteins that are known to be localized in cellular membranes. The function of RCI2 proteins has been reported to be associated with low-temperature, salt, and drought stress tolerances as a membrane potential regulator; however, the specific functions are still unknown. The PIP2 (plasma membrane intrinsic protein 2) aquaporins are proteins that transport water and small solutes into the cell. The expression and activity of PIP2 proteins, like RCI2, are also related to salt- and drought-stress tolerance. In this study, we identified novel protein interactions between RCI2 and PIP2; 1, including protein accumulation changes in the bioenergy crop Camelina sativa L. under various NaCl stress conditions. Accumulation of both CsRCI2E and CsRCI2F proteins increased with NaCl stress; however, to differing levels depending on the NaCl stress intensity. A co-immunoprecipitation test revealed interaction between CsRCI2E-CsPIP2 and CsRCI2F-CsPIP2. Moreover, co-expression of the four CsRCI2 proteins with CsPIP2; 1 in Xenopus laevis oocytes reduced water transport activity. Furthermore, the abundance of CsPIP2; 1 protein was decreased under CsRCI2E and CsRCI2F co-expression. These results suggest that NaCl-induced expression of CsRCI2E and CsRCI2F contributes to the regulation of CsPIP2; 1.


Asunto(s)
Acuaporinas/metabolismo , Brassicaceae/fisiología , Proteínas de Plantas/metabolismo , Estrés Salino , Agua/metabolismo , Animales , Sequías , Mapas de Interacción de Proteínas , Cloruro de Sodio/metabolismo , Xenopus
20.
Neuropharmacology ; 146: 65-73, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30465811

RESUMEN

Voltage-gated potassium channels (VGKCs) are transmembrane ion channels specific for potassium. Currently there are nine kinds of VGKCs. Kv1.4 is one of shaker-related potassium channels. It is a representative alpha subunit of potassium channels that can inactivate A type-currents, leading to N pattern inactivation. Inactivation of Kv channels plays an important role in shaping electrical signaling properties of neuronal and muscular cells. The shape of N pattern inactivation can be modified by removing the N-terminal (NT) domain which results in non-inactivated currents and C pattern inactivation. In a previous work, we have reported the regulatory effect of metergoline on Kv1.4 and Nav1.2 channel activity. In the present study, we constructed a mutant of deleted 61 residues from NT of Kv1.4 channels (Kv1.4 Δ2-61) and found that it induced an outward peak and steady-state currents We also studied the modulation effect of metergoline on the activity of this Kv1.4 Δ2-61 mutant channel without having the N-terminal quick inactivation domain. Our results revealed that treatment with metergoline inhibited NT deleted Kv1.4 mutant channel activity in a concentration-dependent manner which was reversible. Interestingly, metergoline treatment induced little effects on the outward peak current in the deleted Kv1.4 mutant channel. However, metergoline treatment conspicuously inhibited steady state currents of Kv1.4 Δ2-61 channels with acceleration current mode. The acceleration of steady-state current of deleted Kv1.4 mutant channel occurred in a concentration-dependent manner. This means that metergoline can accelerate C pattern inactivation of Kv1.4 Δ2-61 channel by acting as an open state dependent channel blocker. We also performed site-directed mutations in V561A and K532Y, also known as C-type inactivation sites. V561A, K532Y, and V561A + K532Y substitution mutants significantly attenuated the acceleration effect of metergoline on C pattern inactivation of hKv1.4 channel currents. In docking modeling study, predicted binding residues for metergoline were analyzed for six amino acids. Among them, the K532 residue known as the C-type inactivation site was analyzed to be a major site of action. Then various mutants were constructed. K532 substitution mutant significantly abolished the effect of metergoline on Kv1.4 currents among various mutants whereas other changes had slight inhibitory effects. Furthermore, we found that metergoline had specificity for Kv1.4, but not for Kv1.5 currents. In addition, the A type current in rat neuronal cell was inhibited and accelerated of inactivation. This result further shows that metergoline might interact with Lys532 residue and then accelerate C pattern inactivation of Kv1.4 channels with channel type specificity. Taken together, these results demonstrate the molecular basis involved in the effect of metergoline, an ergot alkaloid, on human Kv1.4 channel, providing a novel interaction ligand.


Asunto(s)
Antidepresivos/farmacología , Canal de Potasio Kv1.4/antagonistas & inhibidores , Metergolina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Animales , Sitios de Unión , Cinética , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/fisiología , Lectinas Tipo C , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Neuronas/fisiología , Oocitos , Canales de Potasio con Entrada de Voltaje , Ratas , Relación Estructura-Actividad , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA